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Abstract

There is a substantial body of literature examining the mathematical reasoning capa-1

bilities of large language models (LLMs), particularly their performance on precise2

arithmetic operations in autoregressive architectures. However, their ability to per-3

form approximate reasoning in informal, fast-paced mathematical operations has4

received far less attention, especially among non-autoregressive decoder models.5

Our work addresses this gap by introducing StreetMath, a benchmark designed to6

evaluate models’ approximation abilities under real-world approximation scenarios.7

We conduct extensive evaluations across different LLM architectures: Qwen3-4B-8

Instruct-2507, Qwen3-4B-Thinking-2507, Dream-v0-Instruct-7B, Falcon-Mamba-9

7B-Instruct, and Mamba-GPT-3B. Furthermore, we apply mechanistic interpretabil-10

ity techniques to probe their internal computational states. Our analysis reveals11

that LLMs generally attempt to compute exact values or invoke external tools even12

in tasks that call for approximation. Moreover, while models sometimes reach the13

correct answer in early layers or steps, they still consume more tokens when solving14

approximation tasks. Additional experiments indicate that exact and approximate15

arithmetic operations rely on largely separate neural components. Drawing upon16

research on cognitive psychology, we argue that LLMs do not exhibit cognitive17

miserliness in the same way humans do in street math settings. We open source18

our work https://anonymous.4open.science/r/StreetMath-1/19

1 Introduction20

Human mathematical reasoning flexibly alternates between exact calculation and rough estimation,21

depending on context. This adaptability—often described as “cognitive miserliness” (1)—allows22

people to conserve effort by using approximations when precision is unnecessary. We refer to23

this kind of context-driven, informal, and approximate reasoning as street math—the quick mental24

calculations people make in everyday life, such as estimating the total cost of groceries or computing a25

restaurant tip (e.g., leaving a 20% tip on a $61 bill—roughly 20% of 60 ≈ $12, which is much easier26

to calculate). Large language models (LLMs), in contrast, have been shown to rely on specialized27

internal mechanisms for arithmetic. Recent interpretability studies have uncovered Fourier-like28

computation circuits (2) and attention heads dedicated to mathematical processing (3). Yet it remains29

unclear whether these models exhibit the same context-sensitive flexibility as humans, or whether30

their reasoning is rigidly tied to exact solutions.31

In this work, we introduce the StreetMath dataset, a curated collection of 1000 approximation32

problems drawn from everyday street math scenarios. Using this benchmark, we systematically33

evaluate diverse model classes, including autoregressive decoder architectures (Qwen3-4B-Instruct-34

2507 (4), Qwen3-4B-Thinking-2507), state-space models (Falcon-Mamba-7B (5), Mamba-GPT-35

3B (6)), and diffusion-based language models (Dream-v0-Instruct-7B (7)). Our experiments reveal36

a consistent bias across all architectures: models overwhelmingly favor exact computation, even37
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in contexts where rough estimation would suffice. Most importantly, some models achieve better38

approximation scores only at the cost of increased computation (tokens), which runs counter to39

humans’ cognitive miserliness. To better understand this limitation, we examine models’ rounding40

behavior, a fundamental operation for approximation in the street math setting. We apply linear41

probing to compare internal representations, finding that models’ approximation on single numbers42

resembles human behavior: they often round numbers toward 5 or 10. In addition, models perform43

well at digit-level detection but struggle to generalize to word-based numbers (8).44

We further investigate the neural underpinnings of these behaviors. By pruning the neurons involved45

in exact arithmetic (9), we uncover a surprising dynamic: removing math-specific parameters can46

actually improve performance on approximation tasks. This suggests that rigid, precision-oriented47

circuits may actively hinder flexible estimation. Additional probing into the entropy and effective48

ranks of intermediate layers (10) reveals similar distributions and dimensionalities between exact49

arithmetic operations and approximation. These findings imply that approximation does not reduce50

computational cost—contrary to how humans use approximation to simplify computation.51

Together, these findings suggest that while LLMs have developed specialized pathways for arithmetic,52

they lack the human-like adaptability required for context-sensitive street math. Although LLMs53

are capable of approximating single numbers, they do not leverage this ability during the process of54

solving street math questions; instead, they approximate only after calculating exact answers. We55

conclude that LLMs do not reason about approximation questions in the same way humans do. The56

training corpora likely introduce this universal gap across model architectures and sizes.57

2 StreetMath Dataset & Evaluations58

We release 1,000 multiple-choice math reasoning problems under street math settings, covering five59

major topics, each with several subtopics: basket sum (sum of shopping items), discounts (buy-60

n-get-m-free, threshold discounts such as “$X off if you spend $Y", percentage discounts), taxes61

(tax before discount and tax after discount applied), units (calculating cost based on per-pound or62

per-kilogram prices), and tips (% on spend). Each question offers four answer options, designed63

to distinguish different levels of approximation capability: exact calculation, good approximation64

(within 20% relative error of the exact answer), mildly off (between 60% and 90% relative error),65

and way off (greater than 150% relative error). The benchmark not only evaluates final answers but66

also examines intermediate numerical evidence and the chain-of-thought (CoT) reasoning process.67

Any traces of exact computation or tool usage are flagged as exact math. To assess whether models68

exhibit cognitive miserliness, we use token count as a proxy for reasoning efficiency.69

Table 1: Overall judgement counts by model with tool calls and average tokens (rounded).
Model A E M W Uncategorized Tool calls Avg tokens

Qwen3-4B-Instruct-2507 445 514 40 1 0 1000 125
Qwen-4B-Thinking-2507 151 637 197 15 0 0 228
Dream-v0-Instruct-7B 0 1000 0 0 0 0 263
Falcon-Mamba-7B-Instruct 177 469 131 22 201 0 131
Mamba-GPT-3B 174 459 166 198 3 0 86

Abbreviations: A = Good approximation, E = Exact Math, M = Mildly off, W = Way off

We evaluate a range of model architectures including autoregressive decoder, state-space and70

language diffusion models across different reasoning styles (CoT vs. non-CoT) and parameter sizes71

(3B, 4B, 7B). The models include Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-2507, Dream-72

v0-Instruct-7B, Falcon-Mamba-7B-Instruct, and mamba-GPT-3B. We carefully adapt system and73

user prompts to each architecture to ensure fair comparisons. As shown in Table 1, LLMs across74

all architectures predominantly compute exact answers even when model prompt explicitly asks for75

approximation. When they do produce approximated answers, they typically first compute the exact76

value and then round it. Notably, Qwen3-4B-Thinking-2507 shows better approximation performance77

than Qwen3-4B-Instruct-2507, but this improvement comes at the cost of higher token usage (228 vs.78

125 tokens on average) and increased deviations contrary to human cognitive miserliness. State-space79

models achieve similar approximation performance to Qwen3-4B-Instruct-2507 with fewer tokens80

but greater deviations. Dream-v0-Instruct-7B consistently produces exact answers with perfect81
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accuracy. We leave it to future work to investigate whether adjusting the steps and temperatures of82

Dream-v0-Instruct-7B can improve its approximation performance.83

Overall, our findings indicate that LLMs tend to rely on exact arithmetic even in approximation84

settings, showing behavior opposite to human-like cognitive miserliness. Refer to Section B for85

per-topic benchmarking results.86

3 Linear Probe on Rounding Behaviors87

We investigate whether models encode numerical topology similar to human cognitive distance88

effects (11; 12) by training linear probes (13; 14) to detect nearness to multiples of 5 and 10 (15),89

defining proximity as exactly one integer away from the nearest multiple (e.g., 21 is near-10; 22 is90

not). Using simple templates to extract hidden-state representations, we evaluate five StreetMath91

models on digit-based (“Here is 23.”) and word-based (“Consider the number twenty three.”) inputs,92

analyzing (i) layer-wise accuracy, (ii) best-layer errors across distances 0, 1, 2+.93

Digit tasks show early emergence (16) where state-space models lead: Mamba-GPT-3B reaches94

99.9% and Falcon-Mamba-7B >98%, with best layers in early–middle positions (shortcut-friendly;95

supports early stopping), whereas Dream-v0-Instruct-7B peaks late (26th Near-5, 24th Near-10),96

consistent with diffusion vs. autoregressive/state-space differences. Distance-1 cases (e.g., 9, 11, 14,97

16) are hardest, reflecting digit encoding (17) and calibration biases (18). Word tasks underperform98

across architectures, evidencing surface-form encoding and limited numerical abstraction (19; 20; 21),99

likely due to tokenization, pretraining bias toward digits, and separable digit/word representational100

clusters.101

(a) Digits paraphrase (near=5) (b) Digits paraphrase (near=10)

(c) Words (near=5) (d) Words (near=10)

Figure 1: Accuracy per layer across model families (i) autoregressive decoder: Qwen3-4B-Thinking,
Qwen3-4B-Instruct; (ii) state-space: mamba-gpt-3b, Falcon-mamba-7B-Instruct; (iii) diffusion:
Dream-v0-Instruct-7B) for digits paraphrase and words tasks with near parameters 5 and 10.

4 Causal Studies102

Using structured pruning to isolate parameters tied to exact arithmetic (22; 23), we find that increasing103

pruning does not necessarily hurt StreetMath performance: aside from Qwen3-4B-Instruct-2507, most104

models remain stable or even improve under moderate pruning, contradicting the intuition that reduced105

capacity uniformly impairs numerical reasoning. Pruning effects diverge by benchmark: MMLU and106

RACE are similarly resilient, whereas GSM8K is extremely sensitive—even slight pruning collapses107

accuracy to near zero across all models—implicating a specialized, fragile neuron subset for exact108

arithmetic while StreetMath and language-heavy tasks rely on more distributed representations. These109

patterns align with prior results (22), suggesting a dual pathway: (i) localized, brittle circuits for110

exact arithmetic that fail under pruning, and (ii) distributed, robust circuits for approximation and111

text-heavy reasoning, where moderate pruning can denoise and improve performance—consistent112
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with StreetMath being tackled more as context-driven linguistic estimation than strict mathematical113

computation.114

Figure 2: Effect of structured pruning on task performance for all models. Accuracy is plotted against
the proportion of parameters pruned for StreetMath and GSM8K benchmarks

5 Layer-wise Studies115

The layer-wise analyses (10) reveal a broadly U-shaped evolution of spectral entropy and effective116

rank (high at input, dipping early, then rising) across models and tasks, with Falcon-Mamba-7B on117

StreetMath as the main exception. GSM8K runs of Qwen3-4B-Instruct-2507 show a pronounced dip118

by the first third of layers and a steady increase. Notably, both GSM8K and StreetMath runs exhibit119

elbow-like transitions at comparable depths, consistent with early compression and later re-expansion120

seen in shortcut reasoning (24). This observation supports the view that approximation in StreetMath121

does not help models reach solutions more efficiently, showing the opposite of human cognitive122

miserliness (25).123

It is evident from our experiments that task-specific effects emerge across the models. StreetMath124

runs typically show higher late-layer entropy and effective rank than GSM8K for the same model,125

along with larger transition distances. This pattern indicates not only higher variability across models126

but also more sustained representational expansion and stronger late-stage adjustments. By contrast,127

GSM8K often consolidates into a stable mid-layer corridor with very high cosine similarity and128

minimal angular changes. These observations support our causal study results that models use a more129

diverse set of neurons when handling street math-type questions while dedicating to a small set of130

neurons when handling exact arithmetic operations. For details, refer to E.131

6 Conclusion132

We curated the StreetMath benchmark to reveal LLMs’ lack of cognitive miserliness in street math133

settings. Although these models possess single-number rounding capability, they do not leverage it to134

reduce computational effort. We further discovered that models use a more diverse set of neurons135

when handling street-math-style questions while dedicating a small set of neurons to exact arithmetic136

operations.137
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A Experiment Setup243

A.1 Model Selection244

To examine how different architectures perform under the street math setting, we selected repre-245

sentative models from autoregressive transformer, diffusion-based LLM, and state-space families.246

Given computational constraints, we restricted our study to small- and medium-sized models. To247

ensure reproducibility and enable deeper investigation of internal mechanisms, we further limited our248

selection to open-source models with publicly available weights. Because the task requires models to249

follow prompts reliably and generate multiple-choice responses, we focused on instruction-tuned250

and thinking models. Within these constraints, we also sought to preserve meaningful comparisons,251

such as chain-of-thought versus instruction-only models, as well as cross-architecture and cross-size252

contrasts.253

Accordingly, our study evaluates Qwen3-4B-Instruct-2507, Qwen3-4B-Thinking-2507, Dream-v0-254

Instruct-7B, Falcon-Mamba-7B, and Mamba-GPT-3B. All models are initialized with the default255

parameters.256

A.2 Hardware specifications257

We conducted all experiments on a single NVIDIA A10 GPU hosted on RunPod, using an Ubuntu258

22.04 operating system with CUDA version 12.8.1.259

B StreetMath dataset and benchmark result260

B.1 Data Curation261

StreetMath targets everyday “street math,” emphasizing fast estimation over exact arithmetic. It262

contains multiple-choice questions across shopping and daily-life contexts: basket totals, discounts263

(percentage-off, BOGO, buy-n-get-m, threshold coupons), taxes (pre/post-discount), unit conversions264

(lb-oz, kg-g), and tips. Prompts explicitly nudge for approximate reasoning (“about how much”) to265

elicit human-style rounding.266

Each question has four options: the exact value; a “good approximation” within 20% relative error267

(correct); a “mildly off” option; and a “way off” option (fractional or multi-fold). Choices are shuffled268
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Model Topic Good approx Exact math Mildly off Way off Uncategorized N

Qwen3-4B-Instruct-2507 basket_sum 86 154 1 0 0 241
discounts 15 220 7 0 0 242
taxes 40 132 1 0 0 173
units 22 150 0 0 0 172
tips 22 150 0 0 0 172

Qwen-4B-Thinking-2507 basket_sum 46 104 55 36 0 241
discounts 80 61 51 50 0 242
taxes 40 45 46 42 0 173
units 35 84 22 31 0 172
tips 28 68 40 36 0 172

Dream-v0-Instruct-7B basket_sum 0 241 0 0 0 241
discounts 0 242 0 0 0 242
taxes 0 173 0 0 0 173
units 0 172 0 0 0 172
tips 0 172 0 0 0 172

Falcon-Mamba-7B basket_sum 47 106 43 0 45 241
discounts 50 108 61 5 18 242
taxes 38 63 47 0 25 173
units 8 94 7 14 49 172
tips 11 77 4 0 80 172

Mamba-GPT-3B basket_sum 51 97 46 47 0 241
discounts 43 111 35 53 0 242
taxes 29 59 39 43 3 173
units 32 78 31 31 0 172
tips 19 114 15 24 0 172

Table 2: Benchmark results: Counts by topic for all models.

A–D, with metadata storing numeric values. Spacing ensures clear separation: mild ≥ 60% and way269

≥ 150%.270

Good approximations follow deterministic rounding rules. Basket totals round prices to dollars, then271

sum and drop cents. Discounts round prices to dollars, rates to nearest 5%, pair BOGO (buy one272

get one) items by price, and compute buy-n-get-m deterministically. Threshold coupons apply to a273

rounded subtotal. Taxes round bases and rates (5% steps) before dropping cents. Unit costs round274

prices and weights. Tips apply percentages to subtotals rounded to $5/$10 buckets.275

Data generation is deterministic given a seed. Templates randomize prices, quantities, and rates. Out-276

puts are JSONL lines with id, topic, prompt, choices, labels, correct_label, and metadata277

(exact, good, mild, way). Splits are controllable by topic weights. A validator enforces spacing and278

alignment.279

B.2 StreetMath Benchmark280

The benchmark evaluates LLMs on StreetMath via local JSONL or hosted dataset281

(LuxMuseAI/StreetMathDataset). The system prompt encourages estimation and discourages282

exact calculation. Models must output: “Final choice: <A|B|C|D>”, “Answer: <numeric>”, and283

“Reasoning: <short sentence>”; optional inner thoughts appear in <think>...</think>. The284

runner supports OpenAI-compatible APIs, local Transformers, and Ollama.285

Outputs are parsed for choice, numeric answer, reasoning, and optional tool calls. If only a number is286

given, the closest choice is inferred. Labels: exact = "Exact math," good = "Good approximation,"287

mild/way = "Mildly off"/"Way off." We use the count of Good approximation as evaluation metrics288

to avoid giving arbitrary weights to each choice.289

Each sample yields a JSON record with prompt, predictions, reasoning, token/latency, and judgement.290

A summary aggregates mean scores, label counts, accuracy by topic, tool-call frequency, and average291

resource use. This setup cleanly separates approximation skill from exact computation preference292

while ensuring reproducibility across models and backends.293
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C Linear Probe294

C.1 Experimental Setup295

Task Definition: We train linear probes to detect numerical proximity concepts, specifically whether296

numbers are "near" multiples of 5 or 10. For near-5 detection, proximity is defined as min(|n mod297

10 − 0|, |n mod 10 − 5|, |n mod 10 − 10|) ≤ 1, covering digits {0, 1, 4, 5, 6, 9}. For near-10298

detection, proximity is defined as min(|n mod 10− 0|, |n mod 10− 10|) ≤ 1, covering digits {0, 1,299

9}.300

Data Generation: We generated 4,000 training samples and 1,500 validation samples per condition.301

Numbers were randomly sampled from [0, 9999] and embedded into descriptive templates. Two302

template sets were used:303

• Template A: “Consider the number {n}.”, “Let x = {n}.”, “Value: {n}”, etc.304

• Template B: “Here is {n}.”, “We study the scalar {n}.”, “Write down {n} and continue.”, etc.305

Numbers were presented in two surface forms: digits (“25”) and words (“twenty five”) using the306

num2words library with normalization (hyphens and commas removed, lowercase).307

Training Protocol: We used a two-stage streaming approach to handle memory constraints:308

1. Standardization: StandardScaler fitted per layer using partial_fit() with mean centering309

disabled310

2. Classification: SGD logistic regression with optimal learning rate, L2 regularization (α =311

10−4), and single-epoch updates312

C.2 Evaluation Methodology313

Cross-Template Validation: Three validation sets tested different robustness aspects: 1.Training:314

Template A + digits; 2. Validation A: Template B + digits (template robustness); 3. Validation W:315

Template A + words (cross-modal transfer).316

Error Analysis: We analyzed error patterns at the best-performing layer (highest accuracy) across317

distance buckets. For near-5: distances 0, 1, 2+ . For near-10: distances 0-5 maintained separately.318

We also examined errors by rounding direction: -1 (round down closer), 0 (exact multiple), +1 (round319

up closer).320

Layer Selection Rationale: We analyzed the best-performing layer rather than layer averages321

because: (1) it reveals models’ optimal proximity detection capabilities, (2) it avoids noise from322

suboptimal layers that could mask genuine patterns, (3) it aligns with interpretability goals of323

understanding whether models can learn proximity concepts.324

Layer Sampling: We probed every layer (stride=1) for comprehensive analysis, skipping only325

embedding layers (layer 0).326

Statistical Measures: Accuracy per layer, error rates by distance/direction, best layer identification.327

Results averaged over single runs with fixed random seeds (1337) for reproducibility.328
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Figure 3: Accuracy per layer for digits paraphrase with near parameter 5 across autoregressive
decoder based models including Qwen3-4B-Thinking, Qwen3-4B-Non-Thinking, state-space based
model including mamba-gpt-3b, Falcon-mamba-7B-Instruct, and diffusion based model Dream-v0-
Instruct-7B.

Figure 4: Accuracy per layer for digits paraphrase with near parameter 10 across autoregressive
decoder based models including Qwen3-4B-Thinking, Qwen3-4B-Non-Thinking, state-space based
model including mamba-gpt-3b, Falcon-mamba-7B-Instruct, and diffusion based model Dream-v0-
Instruct-7B.

Figure 5: Accuracy per layer for words with near parameter 5 across autoregressive decoder based
models including Qwen3-4B-Thinking, Qwen3-4B-Non-Thinking, state-space based model including
mamba-gpt-3b, Falcon-mamba-7B-Instruct, and diffusion based model Dream-v0-Instruct-7B.
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Figure 6: Accuracy per layer for words with near parameter 10 across autoregressive decoder based
models including Qwen3-4B-Thinking, Qwen3-4B-Non-Thinking, state-space based model including
mamba-gpt-3b, Falcon-mamba-7B-Instruct, and diffusion based model Dream-v0-Instruct-7B.

Table 3: Comprehensive Near-5 Digit Analysis: Performance and Error Patterns at the best layer.
Acc = Accuracy; Err = Error rate

Model Peak Acc Best Layer Err (0) Err (1) Err (2)
Qwen3-4B-Instruct 0.939 2 0.4% 5.5% 9.4%
Qwen3-4B-Thinking 0.917 6 7.2% 14.6% 2.5%
Dream-7B 0.970 26 4.2% 4.8% 0.5%
Falcon-Mamba-7B-Instruct 0.989 7 0.7% 0.6% 1.7%
Mamba-GPT-3B 0.999 3 0.4% 0.0% 0.0%

Table 4: Comprehensive Near-5 (Words) Analysis: Performance and Error Patterns at the best layer.
Acc = Accuracy; Err = Error rate

Model Peak Acc Best Layer Err (0) Err (1) Err (2)
Qwen3-4B-Instruct 0.603 16 7.0% 4.0% 94.3%
Qwen3-4B-Thinking 0.607 4 0.4% 0.6% 100.0%
Dream-7B 0.620 1 0.0% 0.0% 99.5%
Falcon-Mamba-7B-Instruct 0.784 20 4.2% 2.7% 50.5%
Mamba-GPT-3B 0.746 13 2.1% 0.0% 64.2%

Table 5: Comprehensive Near-10 Analysis: Performance and Error Patterns at the Best Layer
Model Peak Acc Best Layer Err (0) Err (1) Err (2) Err (3) Err (4+)
Qwen3-4B-Instruct 0.967 8 4% 12% 1% 1% 0%
Qwen3-4B-Thinking 0.987 7 1% 3% 3% 0% 1%
Dream-7B 0.988 24 2% 5% 0% 0% 0%
Falcon-Mamba-7B-Instruct 0.998 10 1% 0% 1% 0% 0%
Mamba-GPT-3B 0.999 2 0% 0% 0% 0% 0%

Table 6: Comprehensive Near-10 (Words) Analysis: Performance and Error Patterns at the Best Layer
Model Peak Acc Best Layer Err (0) Err (1) Err (2) Err (3) Err (4+)
Qwen3-4B-Instruct 0.680 3 96% 98% 3% 4% 3%
Qwen3-4B-Thinking 0.687 18 97% 96% 4% 2% 2%
Dream-7B 0.698 12 98% 100% 0% 0% 0%
Falcon-Mamba-7B-Instruct 0.811 9 67% 58% 0% 0% 0%
Mamba-GPT-3B 0.789 4 74% 57% 2% 5% 2%
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D Causal Study329

We adapt the MathNeuro codebase(22) to study pruning and scaling in instruction-tuned LMs.330

For each calibration corpus (a CSV with instruction and response columns), we estimate pa-331

rameter importance by registering forward hooks on all Linear layers and accumulating mean332

activation magnitudes weighted by the corresponding weight magnitudes over 200 calibration333

samples. We then construct a keep-mask that retains the top p% of parameters, where p ∈334

{0.01%, 0.1%, 0.5%, 1%, 2.5%, 5%, 10%, 25%, 50%}.335

Due to compute constraints, each setting is run once using bootstrap samples (≤ 500 examples) drawn336

from both the training set (CSV with question, solution, and answer fields) and each calibration337

set. For every pruning proportion, we reload the model (AutoModelForCausalLM, bfloat16,338

device_map=auto; Dream models are wrapped for lm_eval compatibility), apply the mask, and339

evaluate performance using the EleutherAI LM Evaluation Harness on user-specified tasks.340

To manage compute, per-task evaluation is capped at 1,000 items, and prompts are truncated to 256341

tokens. When no lm_eval tasks are provided, a lightweight multiple-choice evaluator is used. For342

GSM8K, evaluation is limited to 1,000 samples. For StreetMath-style multiple choice, we treat a343

“good approximation” judgment as correct.344

All results are saved per model, per task and per pruning proportion in the specified results directory.345

Figure 7: Effect of structured pruning on task performance for Qwen3-4B-Instruct-2507. Accuracy
is plotted against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath,
GSM8K, and RACE).

E Layerwise Study346

The experiments implement a two-stage pipeline that first extracts layerwise diagnostics from trans-347

former models on mathematical reasoning corpora and then aggregates and visualizes these diagnos-348

tics across many prompts.349

In the first stage, model-specific analysis scripts (for example, Dream-v0-Instruct-7B, Qwen3-4B350

variants, Mamba-GPT-3B, and Falcon-mamba-7B-Instruct) load a Hugging Face model and tokenizer351

and evaluate it on a chosen dataset split. The workflows support both the GSM8K test split and352

a StreetMath test set. For each prompt, the scripts request hidden states, and compute a suite of353

metrics for every layer. Intra-layer measurements include spectral entropy and effective rank (26)354
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Figure 8: Effect of structured pruning on task performance for Qwen3-4B-Thinking-2507. Accuracy
is plotted against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath,
GSM8K, and RACE).

Figure 9: Effect of structured pruning on task performance for Dream-v0-Instruct-7B. Accuracy
is plotted against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath,
GSM8K, and RACE).
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Figure 10: Effect of structured pruning on task performance for Falcon-Mamba-7B-Instruct. Accuracy
is plotted against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath,
GSM8K, and RACE).

Figure 11: Effect of structured pruning on task performance for Mamba-GPT-3B. Accuracy is plotted
against the proportion of parameters pruned for four benchmarks (MMLU, StreetMath, GSM8K, and
RACE).
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obtained from singular-value spectra, activation entropy computed from histogram estimates, the355

trace of the covariance matrix as a proxy for Gaussian complexity, gradient norms approximated356

by the variance of hidden activations, logit-lens proxy scores, and attention entropy when attention357

weights are present. Inter-layer measurements quantify how the representation changes from one358

layer to the next through cosine similarity, L2 distance, and angular distance. Each prompt therefore359

contributes a record containing these per-layer vectors, along with metadata, to a JSON file. Due to360

computational constraint, we limit each dataset to 1000 samples.361

The second stage consolidates these per-prompt records. The script reads a results JSON and computes362

the sample mean and the sample standard deviation across prompts for every metric and for every363

layer index. Because the raw results may mix series of slightly different lengths, the aggregation is364

performed at the most common length observed for each metric, ensuring that elementwise statistics365

are well-defined and not dominated by outliers in shape.366

Figure 12: Layerwise Average Summary - Qwen3-4B-Instruct-2507 on GSM8K

F Related Work367

F.1 The Approximation Gap in Mathematical Reasoning368

Current mathematical reasoning research exhibits a systematic bias toward exact computation, cre-369

ating a fundamental blind spot in our understanding of numerical intelligence. Zhou et al. (2)370

demonstrated that LLMs use specialized Fourier mechanisms for precise arithmetic, while Yu and371

Ananiadou (3) identified localized attention heads for exact operations. Kahneman (1)—adaptively372

reduces computational effort when an approximation suffices. These findings systematically overlook373

cognitive flexibility, instead celebrating models that can perform precise calculations while ignoring374

whether they can engage in the contextually appropriate approximation that characterizes genuine375

mathematical understanding. These mechanistic insights, while valuable, represent a narrow concep-376

tion of mathematical reasoning that prioritizes precision over cognitive flexibility. Recent work by377

Srivastava et al. on LMThinkBench (27) reveals that models achieve high accuracy but at the cost378

of unnecessarily complex reasoning paths; a pattern consistent with systems that lack the cognitive379

control mechanisms necessary for adaptive approximation. When models cannot modulate their380

computational precision based on contextual demands, they default to maximum effort regardless381

of whether such precision is warranted or efficient. Highlighting the gap between computational382

capability and efficient reasoning.383
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Figure 13: Layerwise Average Summary - Qwen3-4B-Instruct-2507 on StreetMath

Figure 14: Layerwise Average Summary - Qwen3-4B-Thinking-2507 on GSM8K
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Figure 15: Layerwise Average Summary - Qwen3-4B-Thinking-2507 on StreetMath

Figure 16: Layerwise Average Summary - Dream-v0-Instruct-7B on GSM8K
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Figure 17: Layerwise Average Summary - Dream-v0-Instruct-7B on StreetMath

Figure 18: Layerwise Average Summary - Falcon-mamba-7B on GSM8K
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Figure 19: Layerwise Average Summary - Falcon-mamba-7B on StreetMath

Figure 20: Layerwise Average Summary - mamba-gpt-3B on GSM8K
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Figure 21: Layerwise Average Summary - mamba-gpt-3B on StreetMath

F.2 Training Data Bias Toward Exact Computation384

Research reveals systematic biases in mathematical reasoning training data that favor exact com-385

putation over flexible approximation strategies. Analysis of major mathematical training corpora386

shows a predominant focus on problems with exact, verifiable answers. Paster et al.’s OpenWebMath387

dataset (28), containing 14.7B tokens of mathematical web content, consists primarily of forum388

discussions, educational materials, and reference pages where mathematical problems are presented389

with definitive solutions rather than approximation strategies. Similarly, Lewkowycz et al.’s Min-390

erva training corpus (29) drew from 118GB of scientific papers and mathematical web content that391

emphasizes precise computational procedures.392

This training bias toward exact answers has measurable consequences for model behavior. The393

pattern-matching hypothesis is supported by Mirzadeh et al.’s GSM-Symbolic analysis (30), which394

reveals that model performance degrades significantly when numeric values are perturbed, indicating395

over-reliance on specific number patterns rather than general reasoning principles. Shao et al. (31)396

explicitly acknowledge this issue, noting that their model exhibits "data selection bias in pre-training397

and fine-tuning" that leads to weaker performance on certain problem types.398

F.3 Overthinking and Computational Inefficiency399

Recent work has documented a troubling pattern: LLMs consistently overthink mathematical prob-400

lems, generating verbose reasoning chains when simpler approaches would suffice. Ding et al. (32)401

proposed "break the chain" strategies to reduce token consumption, demonstrating that models402

maintain performance even when forced to skip intermediate steps. Zhao et al.’s work on efficiency403

enhancement in reasoning models (33) suggests this isn’t just a performance issue but a fundamental404

architectural limitation.405

F.4 Mechanistic Evidence for Competing Circuits406

Mechanistic interpretability studies reveal distinct and overlapping neural pathways for exact versus407

approximate reasoning. Christ et al. (9) demonstrated that math-specific parameters can be isolated408

through structured pruning. Skean et al. (34) conducted a layer-by-layer analysis, revealing that dif-409

ferent types of mathematical operations are processed at different depths in transformer architectures.410
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Sun et al. (35) probed arithmetic errors in language models and identified systematic patterns in411

computational failures, while Saynova et al. (36) investigated whether mathematical reasoning relies412

on fact recall, heuristics, or pure computation, finding evidence for multiple pathways depending on413

problem complexity and context.414

F.5 Numerical Representation and Geometric Understanding415

Understanding how LLMs represent numerical information has been a focus of recent mechanistic416

interpretability work. Levy and Geva (8) demonstrated that language models encode numbers using417

individual circular representations for each digit in base 10, providing geometric understanding of418

numerical processing. Kantamneni and Tegmark (37) extended this work by showing that language419

models use trigonometric functions in their internal computations, suggesting sophisticated geometric420

representations of numerical concepts. Zhu et al. (38) investigated how language models encode421

numeric magnitude, while Shah et al. (39) examined magnitude comparison tasks, finding that models422

develop specialized circuits for determining relative numerical size. These representational studies423

suggest that current numerical encodings may be too rigid to support flexible approximation strategies.424

F.6 Architectural Differences in Approximation Capacity425

Different LLM architectures exhibit varying capabilities for flexible reasoning, though systematic426

evaluation of approximation strategies across architectures remains limited. Li et al. (40) explored427

diffusion models for language tasks, demonstrating their application to text generation, though their428

mathematical reasoning capabilities, particularly regarding approximation versus precision trade-offs,429

have not been extensively studied.430

The architectural constraints that affect mathematical reasoning extend beyond approximation to431

fundamental information processing capabilities. Jelassi et al. (41) demonstrated that transformers432

can theoretically copy strings of exponential length while state-space models are fundamentally433

limited by their fixed-size latent state, suggesting that the rigid memory constraints that impede434

copying may also constrain flexible approximation strategies. These findings indicate that current435

architectural paradigms may systematically differ in their capacity for the kind of cognitive flexibility436

that characterizes human mathematical reasoning.437

This architectural variation highlights a broader gap in our understanding of how different model438

designs affect the ability to engage in contextually appropriate approximation—a crucial aspect439

of mathematical intelligence that remains largely unexplored across the spectrum of current LLM440

architectures.441

F.7 Augmentation Strategies and Alternative Approaches442

Recognizing the limitations of pure language model approaches to arithmetic, researchers have443

proposed several augmentation strategies. Tool-augmented approaches represent the dominant444

paradigm, where models learn to invoke external calculators, symbolic solvers, or knowledge bases.445

Schick et al. (42) introduced Toolformer, which teaches LLMs to use tools through self-supervised446

learning, while Das et al. (43) developed MathSensei, combining web search, Python execution, and447

Wolfram-Alpha integration for comprehensive mathematical reasoning support.448

Program-aided reasoning offers another promising direction. Gao et al. (44) proposed Program-Aided449

Language models (PAL), which generate Python programs as intermediate reasoning steps, while450

Chen et al. (45) introduced Program-of-Thoughts prompting to separate computation from reasoning.451

These approaches effectively delegate precise calculations to programming environments while452

preserving natural language reasoning.453

At the architectural level, Dietz and Klakow (46) introduced the Integrated Gated Calculator (IGC),454

which emulates a calculator directly on the GPU, achieving 98-99% accuracy on arithmetic tasks in a455

single iteration without external tools. Lauter et al. (47) investigated machine learning approaches for456

modular arithmetic, demonstrating specialized techniques for specific algebraic structures, though457

with limited success that highlights the inherent difficulty of certain mathematical operations.458

While these augmentation strategies successfully address computational limitations and improve exact459

calculation capabilities, they do not resolve the fundamental issue our work identifies: the inability to460
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engage in contextually appropriate approximation when exact computation is unnecessary. Current461

approaches actually reinforce the precision bias by providing increasingly sophisticated mechanisms462

for exact calculation, potentially exacerbating the cognitive inflexibility that characterizes current463

mathematical reasoning systems.464

F.8 Pattern Recognition vs. Algorithmic Understanding465

A fundamental question concerns whether models learn genuine algorithms or rely on sophisticated466

pattern recognition. Nikankin et al. (48) examined "arithmetic without algorithms," investigating467

whether models can perform mathematical reasoning without explicit algorithmic procedures, suggest-468

ing that models may rely on pattern recognition and approximation strategies that differ fundamentally469

from formal mathematical computation. Gambardella et al. (49) investigated whether language mod-470

els perform hard arithmetic by examining their computational processes, while Lovering et al. (50)471

examined language model probabilities in mathematical contexts, providing insights into how models472

represent uncertainty and confidence.473

F.9 The Need for Approximation-Aware Evaluation474

Current mathematical reasoning evaluation focuses exclusively on exact computation, creating a475

fundamental evaluation gap that obscures crucial aspects of mathematical intelligence. While Ahn et476

al.’s comprehensive survey (51) emphasizes that "accuracy shouldn’t be the sole metric" for evaluating477

mathematical reasoning and highlights the need for more robust evaluation beyond final-answer478

correctness, existing benchmarks continue to reward only precise answers regardless of contextual479

appropriateness.480

This evaluation paradigm fails to assess whether LLMs can engage in the kind of flexible, context-481

appropriate approximation that characterizes human mathematical cognition in everyday settings.482

The gap is significant because it touches on fundamental questions about the nature of machine483

intelligence and whether current LLMs genuinely understand mathematical concepts or merely484

implement sophisticated pattern matching. Without evaluating approximation capabilities, we cannot485

determine if models possess the cognitive flexibility necessary for human-like mathematical reasoning486

in diverse contexts.487

G Limitations488

While our work provides new insights into the approximation behavior of LLMs, several limitations489

remain. First, the StreetMath dataset contains only 1,000 problems, which may not capture the full490

variety of real-world estimation tasks. Second, our evaluation focuses on a specific set of open-source491

models; results may not generalize to larger proprietary systems or other architectures. Third, our492

analysis is restricted to numerical approximation in simple arithmetic settings. Extensions to more493

complex mathematical domains are left for future work.494
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