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I. INTRODUCTION

Approximation constitutes a fundamental component of empirical
scientific discovery [1], and its significance is further amplified by
the emergence of hypotheses generated by large language models
(LLMs) [2]. However, mechanistic interpretability studies that exam-
ine the capacity of LLMs to perform estimation remain less explored.
Building on prior work [3], we investigate whether LLMs exhibit
human-like rounding strategies (e.g., rounding to the nearest multiple
of 5 or 10). We conduct a systematic analysis using linear probes
[4], across LLMs of varying sizes and architectures—autoregressive
(AR), diffusion (Diff), and state-space (SS). Specifically, we examine
tasks involving “near 5” and “'near 10” estimation to characterize their
rounding behavior. Our findings suggest early stopping opportunities
[10] may enable reduced computational cost while still arriving at
rounded outputs. Future work includes pursuing causal analyses to
identify neurons implicated in rounding operations. Additionally, we
plan to develop applications that leverage rounding-based strategies
for faster inference.

II. RESULTS

We design a task that requires detecting whether a given number
is close to a multiple of n. Specifically, we set n=10 and n=5,
and train linear probes to predict this property from hidden states.
Figure 1 reports classification accuracy across layers, and Table I, II
presents error rates at different rounding distances (measured at the
best-performing layer) for a range of models: Qwen3-4B-Instruct-
2507 (NT) [5], Qwen3-4B-Thinking-2507 (T), Dream-org/Dream-v0-
Instruct-7B [6], as well as the state-space models Mamba-1.4B and
Mamba-2.8B [7].

Both autoregressive (AR) and diffusion (Diff) models exhibit an
early emergence of strong accuracy. In the later layers, Diff achieves
the best accuracy, whereas AR achieve second best accuracy. This
pattern is consistent across tasks and model configurations (thinking
vs. non-thinking, architectural differences). Furthermore, we hypoth-
esize that AR and Diff models achieve early performance peaks
through rapid initial processing, followed by refinement attempts
in intermediate layers. This observation underscores the presence
of internal shortcuts and highlights opportunities for early stopping
strategies. In contrast, the Mamba models show lower and oscillating
accuracies across layers, independent of model size or task type,
with no evidence of refinement. Table I, II further indicates that the
Mamba models display binary behavior across all tasks, achieving
either complete correctness or total failure.

Across most AR and Diff experiments, the highest error rates occur
at rounding distance 1 (numbers one unit away from multiples of 5
or 10), regardless of task type. This pattern is significant because it
reveals how models process numerical proximity: numbers like 9, 11,
14, or 16 are most likely to be misclassified in rounding tasks, while
exact multiples (distance 0) and numbers further away (distance 2+)
are classified more accurately. We hypothesize that models struggle
particularly with these boundary cases due to digit-based number
encoding [8] and calibration biases [9]. The error pattern has an
exception for Qwen3-4B-Instruct-2507 in Near-5 tasks where errors
increase with distance. Also, Qwen3-4B-Thinking and Dream-7B

TABLE I
COMPREHENSIVE NEAR-5 ANALYSIS: PERFORMANCE AND ERROR
PATTERNS AT THE BEST LAYER. ACC = ACCURACY; ERR = ERROR RATE

Model Peak Acc|Best Layer|Err (0)|Err (1) | Err (2)

Qwen3-4B- 0.939 2 04% | 55% | 9.4%

Instruct-2507

Qwen3-4B- 0.917 6 7.2% | 14.6% | 2.5%

Thinking-2507

Dream-7B 0.970 26 4.2% | 4.8% | 0.5%

Mamba-2.8B-HF | 0.597 1 0.0% | 0.0% |100.0%

Mamba-1.4B-HF | 0.597 1 0.0% | 0.0% |100.0%
TABLE 11

COMPREHENSIVE NEAR-10 ANALYSIS: PERFORMANCE AND ERROR
PATTERNS AT THE BEST LAYER. BEST: BEST LAYER

Model Peak Acc|Best|Err (0)Err (1)|Err (2)|Err (3)|Err (4+)
Qwen3-4B- 0.967 8 4% 12% 1% 1% 0%
Instruct-2507

Qwen3-4B- 0.987 7 1% 3% 3% 0% 1%
Thinking-2507

Dream-7B 0.988 24 | 2% 5% 0% 0% 0%
Mamba-2.8B- 0.697 1 | 100% | 100% | 0% 0% 0%
HF

Mamba-1.4B- 0.697 2 | 100% | 100% | 0% 0% 0%
HF

show superior Near-10 performance, while Qwen3-4B-Instruct-2507
excels in Near-5 tasks, indicating model-specific rounding strategies
that may inform improved approximation.
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Fig. 1. Linear Probe Accuracy Across All Models and All Digit-Tasks.
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'"We open source the results and tools in https://github.com/ctseng777/

Decipher-Deep-Math-in-Rounding

2We use Claude to help with scripting and ChatGPT with Latex formatting



